
www.eskavalve.com


# EGF-H <br> SERIES 

## INTRODUCTORY AND TECHNICAL INFORMATION

EGF-H model gas filters are the elements that seperates the dust particles carried by the gas or very small particles spread within the gas (for example: dust and rust), holds these and protects the burner, gas counter and adjustment devices which may possibly be damaged. Dust, woodchips, smut and other physical substances and dirt in the gas are held by the fiber. When the dust tank capacity is exceeded or a very high pressure difference effected, the filter loses its filter protection function. The filters are resistant against the mechanical and thermal stress that occur under operational conditions. The device must be kept away from rain and water as much as possible.

- Usage
- Fluid Type
- Pressure Class : PN6
- Connection or Port Size
: City gas networks and gas pipelines in industrial areas
: Non-corrosive gases such as Natural Gas (Methane), LPG, Town Gas, Air, etc..
: 1/2" $, 3 / 4,1^{\prime \prime}, 11 / 4^{\prime \prime}, 11 / 2^{\prime \prime}, 2^{\prime \prime}$ Threaded (Female)
- Filter

Pore dimensions as standard 50 micron (5-10-20 microns on request)

- Ambient

Temperature Range : $-20^{\circ} \mathrm{C}$ up to $60^{\circ} \mathrm{C}$

- Pressure

Test Connection : 1/4" Threaded (Female)

- Material Standard : Aluminum EN 1706, Rubbers EN 549


EGF-H 1015-1020-1025


EGF-H 1032-1040-1050

EGF-H SERIES CAPACITY GRAPH


## CONFIGURATIONS



EGF-H 1015-1020-1025

INLINE


## DIMENSIONS



| MODEL | DN | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EGF-H 1015 | 15 | $1 / 2^{\prime \prime}$ | 120 | 61,5 | 108,5 | 120 |
| EGF-H 1020 | 20 | $3 / 4^{\prime \prime}$ | 120 | 61,5 | 108,5 | 120 |
| EGF-H 1025 | 25 | $1 \prime$ | 120 | 61,5 | 108,5 | 120 |



| MODEL | DN | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| EGF-H 1032 | 32 | $11 / 4^{\prime \prime}$ | 160 | 53,5 | 91 | 140 |
| EGF-H 1040 | 40 | $11 / 2^{\prime \prime}$ | 160 | 53,5 | 91 | 140 |
| EGF-H 1050 | 50 | $2 \prime$ | 160 | 68,5 | 114 | 140 |

